Cytoplasmic domain filter function in the mechanosensitive channel of small conductance.
نویسندگان
چکیده
Mechanosensitive channels, inner membrane proteins of bacteria, open and close in response to mechanical stimuli such as changes in membrane tension during osmotic stress. In bacteria, these channels act as safety valves preventing cell lysis upon hypoosmotic cell swelling: the channels open under membrane tension to release osmolytes along with water. The mechanosensitive channel of small conductance, MscS, consists, in addition to the transmembrane channel, of a large cytoplasmic domain (CD) that features a balloon-like, water filled chamber opening to the cytoplasm through seven side pores and a small distal pore. The CD is apparently a molecular sieve covering the channel that optimizes loss of osmolytes during osmoadaptation. We employ diffusion theory and molecular dynamics simulations to explore the transport kinetics of Glu(-) and K(+) as representative osmolytes. We suggest that the CD indeed acts as a filter that actually balances passage of Glu(-) and K(+), and possibly other positive and negative osmolytes, to yield a largely neutral efflux and, thereby, reduce cell depolarization in the open state and conserve to a large degree the essential metabolite Glu(-).
منابع مشابه
Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS.
Mechanosensitive channels are a class of ubiquitous membrane proteins gated by mechanical strain in the cellular membrane. MscS, the mechanosensitive channel of small conductance, is found in the inner membrane of Escherichia coli and its crystallographic structure in an open form has been recently solved. By means of molecular dynamics simulations we studied the stability of the channel confor...
متن کاملFunctional Analysis of Conserved Motifs in the Mechanosensitive Channel Homolog MscS-Like2 from Arabidopsis thaliana
The Mechanosensitive channel of Small conductance (MscS) of Escherichia coli has become an excellent model system for the structural, biophysical, and functional study of mechanosensitive ion channels. MscS, a complex channel with multiple states, contributes to protection against lysis upon osmotic downshock. MscS homologs are widely and abundantly dispersed among the bacterial and plant linea...
متن کاملThe protective effect of osmoprotectant TMAO on bacterial mechanosensitive channels of small conductance MscS/MscK under high hydrostatic pressure
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the "flying-patch" patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methy...
متن کاملIdentification of Intracellular β-Barrel Residues Involved in Ion Selectivity in the Mechanosensitive Channel of Thermoanaerobacter tengcongensis
The mechanosensitive channel of small conductance (MscS) is a bacterial membrane pore that senses membrane tension and protects cells from lysis by releasing osmolytes. MscS is a homoheptameric channel with a cytoplasmic domain with seven portals and a β-barrel opening to the cytoplasm. TtMscS, an MscS channel from Thermoanaerobacter tengcongensis, is an anion-selective channel. A previous stud...
متن کاملBrownian dynamics investigation into the conductance state of the MscS channel crystal structure.
We suggest that the crystal structure of the mechanosensitive channel of small conductance is in a minimally conductive state rather than being fully activated. Performing Brownian dynamics simulations on the crystal structure show that no ions pass through it. When simulations are conducted on just the transmembrane domain (excluding the cytoplasmic residues 128 to 280) ions are seen to pass t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2011